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Abstract— Data-driven and controllable human motion syn-
thesis and prediction are active research areas with various
applications in interactive media and social robotics. Challenges
remain in these fields for generating diverse motions given
past observations and dealing with imperfect poses. This paper
introduces MoDiff, an autoregressive probabilistic diffusion
model over motion sequences conditioned on control contexts
of other modalities. Our model integrates a cross-modal Trans-
former encoder and a Transformer-based decoder, which are
found effective in capturing temporal correlations in motion
and control modalities. We also introduce a new data dropout
method based on the diffusion forward process to provide richer
data representations and robust generation. We demonstrate
the superior performance of MoDiff in controllable motion
synthesis for locomotion with respect to two baselines and show
the benefits of diffusion data dropout for robust synthesis and
reconstruction of high-fidelity motion close to recorded data.

I. INTRODUCTION

Motion synthesis techniques play an important role in
computer animation, video games, human-robot interac-
tion [1], etc. Recently, significant progress has been achieved
in motion generation and reconstruction by utilizing deep
generative models [2], which can be broadly divided into
deterministic and probabilistic models. Deterministic mod-
els [3], [4] frame the motion synthesis task as a regression
problem in which the response and input have exact relation-
ships, leading to stereotypical results with limited diversity.
In contrast, probabilistic models fit probabilistic distributions
to the data distribution [5], [6], which capture a range of
motion patterns and as such significantly improve the motion
diversity and fidelity.

Despite recent advances in deep generative models, mo-
tion synthesis still remains challenging in a number of
aspects. For example, capturing complex relations between
body limbs and motion frames requires models that are
less susceptible to failures such as mode collapse. Also,
robust and coherent synthesis is desirable even when long-
term generation is conditioned on imperfect data. The latter
is particularly demanding when human skeletal data are
extracted from noisy sensors or previously generated frames.
Earlier work often assume perfect conditioning patterns [5]
or manually defined graph structures [2], and thus cannot
satisfactorily mitigate this issue.

In this paper, we propose MoDiff, a diffusion-based prob-
abilistic model for high-quality controllable human motion
synthesis, as illustrated in Fig. 1. Diffusion-based approaches
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Fig. 1: Illustration of the generation process: MoDiff pro-
gressively denoises a noisy motion sequence to get a natural
movement, given past motion and control contexts.

have recently gained traction for their superior performance
as probabilistic generative models and found application also
in human motion synthesis [7], [8]. Score-based diffusion
models require no special neural network architectures, such
as in the case of flow-based approaches [5], [2], to optimize
an exact likelihood. Our work leverages this flexibility by
introducing a cross-modal Transformer-based architecture,
which enables richer representations for encoding past mo-
tion frames and control contexts. The approach also exploits
the intermediate representations generated in the diffusion
process for a natural dropout strategy to improve robust-
ness. Our evaluation on domain standard human locomotion
datasets shows that MoDiff outperforms baseline methods
and produces realistic motions conditioning on control con-
texts of other modalities. We further demonstrate that the
same framework can be applied for reconstruction of imper-
fect motion sequences.

In summary, our contributions are:
• We present a flexible neural architecture, MoDiff, that

integrates multimodal transformer and autoregressive
diffusion models for motion generation and reconstruc-
tion of missing parts in motion sequences.

• We propose diffusion data dropout, utilizing the forward
process to obtain diffusion-induced motion representa-
tions, which can be employed to improve adherence to
the control context.

• The proposed approach achieves superior results for hu-
man motion generation and reconstruction. Applications
include, but is not limited to, locomotion synthesis, text-
to-motion, and music-to-dance.

The paper proceeds as follows: Section II gives an in-
troduction to previous work on human motion synthesis,
diffusion models, and data dropout. Section III formulates
the problem and provides a comprehensive description of the
proposed framework for controllable motion synthesis and
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reconstruction. Section IV introduces the experimental setup,
discusses the results, and compares these to two baselines.
Finally, Section V summarizes the paper and outlines future
directions.

II. RELATED WORK

In this section, we provide an overview of deep learning-
based human motion synthesis (Section II-A) and denoising
diffusion probabilistic models (DDPMs) (Section II-B), and
then describe prior work on data dropout (Section II-C).

A. Human Motion Synthesis

Deep learning approaches have been widely adopted for
human motion synthesis following earlier success in other
domains. These approaches can be categorized into deter-
ministic and probabilistic methods. Most previous works
follow the deterministic approach to yield a fixed output
for a given input. For instance, Fragkiadaki et al. [3] first
applied recurrent neural networks to human motion predic-
tion. Butepage et al. [4] directly fed the most recent previous
frames through an encoder-decoder network to predict future
motion frames. Li et al. [9] introduced a conditioned LSTM
for synthesizing long-term motion patterns, and Martinez et
al. [10] employed a sequence-to-sequence architecture with
residual connections for joint prediction.

To synthesize motion patterns with more variety and di-
versity, probabilistic methods have also been adopted. Earlier
works model distributions over human motion with Gaussian
mixture models [11], and Gaussian Process models [12]. As
for deep neural networks, Variational Autoencoders (VAEs)
and their variants, which optimize a lower bound on the
data log-likelihood, have been used in combination with
recurrent structures for controllable motion synthesis [13].
VAE-based approaches have also been utilized in cross-
modal synthesis tasks, such as generating motion sequences
from speech [14]. Another significant branch of methods is
based on Generative Adversarial Networks (GAN) [6], [15].
GANs are deemed more powerful and effective for encoding,
but are often difficult to train and evaluate. To this end,
Flow-based generative models gained in popularity, as they
enable tractable likelihood evaluation and efficient model
parameterization. MoGlow [5] models motion sequences
with autoregressive normalizing flow and recurrent neural
networks. Yin et al. [2] further integrated MoGlow with
graph convolutional networks for motion reconstruction. Ho
et al. [16] presented diffusion models, a new paradigm
for probabilistic generative modeling that allows for greater
flexibility in the choice of architectures. Our method adopts
a diffusion model for improved model capacity and training
stability in learning controllable motion synthesis.

B. Denoising Diffusion Probabilistic Models (DDPMs)

DDPMs [16], [17] are a class of generative models in-
spired by non-equilibrium thermodynamics. DDPMs have a
forward and a reverse process. The forward process progres-
sively adds noise to data and the reverse process learns to
construct data samples from the noise. The learning model

allows regular neural networks to be used, which makes the
models both analytically tractable and flexible.

Several works on human motion generation have adopted
diffusion models. MID [18] encodes historical information
on behaviors and global signals as an embedding and devises
a Transformer-based diffusion model for human trajectory
prediction. BelFusion [19] is a diffusion model that exploits
a behavioral latent space for human motion prediction. The
recent MotionDiffuse [7] is considered to be the first diffu-
sion model-based text-driven motion generation framework
with instructions on body parts. Similar to MotionDiffuse,
MDM [8] integrates diffusion models and CLIP [20] for text-
to-motion generation. Recently, diffusion models have been
utilized to generate dance movements, a challenging task due
to the intricate postures, rhythms, and compositions involved
in dance, often accompanied by music. Alexanderson et
al. [21] pioneer diffusion models with Conformer [22] for
audio-driven dance motion generation. Tseng et al. [23]
propose EDGE, a transformer-based diffusion model that
generates dance sequences conditioned on music.

Our proposed framework applies diffusion models for
motion generation and models the temporal information in
an autoregressive manner, similar to TimeGrad [24], with a
cross-modal transformer inspired by Li et al. [25] for con-
trollable generation from various modalities. The difference
is that our framework can impose/alter the control signal
on the motion generation process on the fly while other
models need a supplied command, whether it be text-based
or in other forms, before the full sequence can be generated.
Moreover, the design of the autoregressive diffusion model
is flexible and can be extended to tasks that require robust
generation, e.g. synthesis and reconstruction from imperfect
motion frames, without additional training, something that is
not featured in the works reviewed above.

C. Data Dropout

Due to an over-reliance on the autoregressive context,
autoregressive models often suffer from poor adherence to
the control context and as such have compromised consis-
tency in controllable generation [5]. Such a phenomenon is
exacerbated with long-term prediction. Natural approaches
to counter this problem includes removing some or all of
the conditioning information during learning. Bowman et
al. [26] randomly replace some part of the conditioned
word tokens with a generic unknown word token. They
apply this technique to a decoder, helping the model to
capture higher-order statistics. Wang et al. [27] propose a
data dropout strategy that randomly sets the data to zero in
both the training and generation stages, forcing the models
to focus on the control context, thus alleviating this problem.
Kovács et al. [28] propose an input channel dropout scheme,
forcing the network to make decisions based on a subset
of channels. To rememdy the poor adherence issue in the
original MoGlow [5], MoGlow applies dropout to entire
frames of the autoregressive past motion context.

In this paper we proposes a new diffusion-induced dropout
scheme. We leverage the Gaussian noise injected in the dif-



Algorithm 1: Training for data sample at time t
Input: data yt0, past motion xt, and control input ct

Repeat
Initialize s ∼ Uniform((1, · · · , S), ε ∼ N (0, I)
if diffusion dropout, p ∼ U(0, 1) do
xtd = xts if p < pd, else, xtd = xt

Take gradient step on
∇θ
∥∥ε− εθ(√αsyt0 +

√
1− αsε, s, xtd, ct)

∥∥
Until converged

fusion forward process and use intermediate representations
as corrupted conditions. Our strategy naturally removes the
requirement of tuning a separate process and is found to
benefit the consistency between the generated motion and the
control contexts. In addition, this also encourages encoders
to learn richer and more robust representations.

III. METHODOLOGY

This section formulates our target problem and establishes
notations used throughout the paper. Preliminaries about
denoising diffusion probabilistic models are also given, in-
cluding the training and inference strategies. On the basis of
these, we introduce our contributed framework.

A. Problem Formulation

In our scenario, we treat the human motion sequence as
a series of poses, and the aim is to synthesize the future
motion and reconstruct the past imperfect poses using an
autoregressive diffusion model. Formally, a 3D skeleton-
based pose at time step t is denoted as mt, with corre-
sponding additional information at, such as control signals,
texts, music pieces, etc. For the synthesis task, the input
of the diffusion framework is the past human poses xt ={
mt−Th ,mt+1−Th , · · · ,mt

}
, and the control input ct ={

at−Th , at+1−Th , · · · , at+Tp
}

, where Th denotes the length
of the observed past poses and Tp denotes the number of pre-
dicted frames. The output of the framework is the predicted
future motion frames, written as yt =

{
mt+1, · · · ,mt+Tp

}
.

For the reconstruction task, the past human poses are par-
tially observed, e.g. with missing frames or missing body
joints. In such cases, the task is to reconstruct a complete
motion xt from an imperfect input, that we denote x̂t, with
the control input ct.

B. Motion Diffusion Models

We address the formulated problem with our proposed au-
toregressive diffusion model (MoDiff) based on DDPM [16],
as illustrated in Fig. 2. We define the forward diffusion pro-
cess as (y0, y1, · · · , yS), where S is the maximum number
of diffusion steps. For the sake of brevity, we omit the
superscript t. The forward process is a stochastic process
with a fixed Markov chain that gradually adds Gaussian
noise to the ground truth future motion data y0 = y until the
distribution of yS is close to a standard Gaussian distribution:

Algorithm 2: Inference the future motions yt0
Input: noise ytS ∼ N (0, I), past motion xt, and

control input ct

for s = S, · · · , 1, do
yts−1 = 1√

αs
(yts −

βs√
1−αs

εθ(y
t
s, s, x

t, ct)) +
√
βsz

where z ∼ N (0, I) if s > 1, else z = 0
end for
Output: yt0

q(y1:S |y0) :=

S∏
s=1

qθ(ys|ys−1);

q(ys|ys−1) := N (ys;
√

1− βsys−1, βsI),

(1)

where β1, β2, · · · , βS are the fixed variance schedulers for
controlling the noise scale. As shown in [16], the forward
diffusion sample at any diffusion step s can be calculated in
one step as:

q(ys|y0) := N (ys;
√
αsy0, (1− αs)I), (2)

where αs = 1 − βs and αs =
∏s
i=1 αi. In the reverse gen-

eration process, we learn this process as (yS , yS−1, · · · , y0)
and generate motions by progressively denoising the pose
from yS to y0. We model this reverse generation process
by parameterizing Gaussian transition probabilities with the
past poses x and the past and current control signal c as
conditioning information. The reverse generation process is
formulated as:

pθ(y0:S |x, c) := p(yS)

S∏
s=1

pθ(ys−1|ys, x, c)

pθ(ys−1|ys, x, c) := N (ys−1;µθ(ys, s, x, c),Σθ(ys, s)),
(3)

where p(yS) denotes a prior noise Gaussian distribution and
Σθ(ys, s) = βsI. All transitions share the same parameters.

C. Training and Inference

With the formulated forward diffusion process and reverse
generation process, to generate the human pose of future
motion frames y0, the training process optimizes the log-
likelihood in the reverse generation process by maximizing
the variational lower bound:

E[logpθ(y0)] ≥ Eq[log
pθ(y0:S , x, c)

q(y1:S |y0)
]

= Eq[logp(yS) +

S∑
s=1

log
pθ(ys−1|ys, x, c)
q(ys|ys−1)

].

(4)
We utilize the negative bound as the loss function, written
as the KL-divergence between Gaussian distributions:

Eq[− logpθ(y0|y1, x, c) +DKL(q(yS |y0)||p(yS))

+

S∑
s=2

DKL(q(ys−1|ys, y0)||pθ(ys−1|ys, x, c))].
(5)



Fig. 2: Overview of the MoDiff schematic: a Transformer-based diffusion probabilistic model synthesizes future motion by
the learned reverse diffusion process. The correlation between the motion and control context is depicted by the cross-modal
transformer encoder. Future motions are predicted autoregressively.

The first KL-divergence term with q(yS |y0)||p(yS) has no
learnable parameters and can thus be ignored. q(ys−1|ys, y0)
is conditioning on y0, which is tractable and can be repre-
sented as:

q(ys−1|ys, y0) = N (ys−1; µ̃s(ys, y0), β̃sI), (6)

where µ̃s and β̃s is calculated as:

µ̃s(ys, y0) =

√
αs−1βs
1− αs

y0 +

√
αs(1− αs−1)

1− αs
ys

β̃s =
1− αs−1
1− αs

βsI.

(7)

Ho et al. [16] show that the second KL-divergence term can
be calculated as:

Eq
[

1

2βs
‖µ̃s(ys, y0)− µθ(ys, s, x, c)‖2

]
+ λ, (8)

where λ is a constant value that does not depend on θ. We
choose the reparameterization method shown in [16] that

µθ(ys, s, x, c) =
1
√
αs

(ys −
βs√

1− αs
εθ(ys, s, x, c)), (9)

and the objective function is simplified to

Eε,y0,s
∥∥ε− εθ(√αsy0 +

√
1− αsε, s, x, c)

∥∥2 , (10)

where εθ is a network that predicts Gaussian noise ε ∼
N (0, I) and is trained with the MSE loss. The training is
performed for all steps s ∈ [1, S]. The complete training
procedure with the simplified objective function is displayed
as Algorithm 1, with the diffusion dropout later introduced
in Section III-D. After the network εθ is trained, given
past poses x, control input c, and yS ∼ N (0, I), we can
synthesize future motions y0 with the reverse generation
process ys−1 ∼ pθ(ys−1|ys),:

ys−1 =
1
√
αs

(ys −
βs√

1− αs
εθ(ys, s, x, c)) +

√
βsz, (11)

where z ∼ N (0, I) for s ∈ [2, S] and z = 0 when s = 1.
We follow the generation procedure in Algorithm 2 to predict
the next sample yt0 = {mt+1

0 , · · · ,mt+Tp

0 }. Inspired by Li

et al. [25] and Guillermo et al. [1], our model outputs the
next Tp poses given the past Th poses to improve model
performance. We then only update the next time step t +
1, pass it autoregressively to the transformer-based encoder
together with the next control input, and repeat the same
procedure until all desired motion frames are synthesized.

D. Diffusion Data Dropout

Diffusion data dropout is applied during the training stage
to improve data efficiency and model robustness. To be
specific, we drop motion context information through the
forward diffusion process without extra effort. A larger
diffusion step s in the diffusion data dropout leads to the
past motion xt being more corrupted and less information is
preserved. Similar to Equation 2, the past motion information
with respect to step s can be calculated in one step as:

q(xts|xt) := N (xts;
√
αsx

t, (1− αs)I). (12)

As shown in Algorithm 1, data dropout is done if p < pd,
where p ∼ U(0, 1) and pd is the diffusion dropout rate.
We stabilize the training by starting with pd = 0, i.e., with
complete motion context information. A diffusion dropout
scheduler Pd = {pd1, pd2, · · · , pdn} is set to increase the
dropout rate during training. As the diffusion dropout rate
increases, the denoising process becomes more focused on
the control context and more robust to corruption of the
motion context.

E. Motion Reconstruction

For motion reconstruction, we use the same framework
without any further training. Our framework allows an im-
perfect input x̂t = {m̂t−Th , · · · , m̂t} since diffusion data
dropout was applied during training. To reconstruct missing
body joints or frames, we first generate a sequence of Th fu-
ture frames, {mt+1, · · · ,mt+Th}. Then we reverse the order
of this sequence and the control signals {at−Th , · · · , at+Th}
to {mt+Th , · · · ,mt+1} and {at+Th , · · · , at−Th}, exploiting
the fact that the training data are augmented by lateral
mirroring and time-reversion. We regard the reversed motion
context and control context as conditioning information to



generate poses. The missing information can be recon-
structed by filling the holes with the generated parts. We
repeat until all missing parts are reconstructed.

F. Network Architecture

The proposed MoDiff framework is composed of an
encoder and a decoder. The encoder encodes the past motion
context and control context, and the decoder models the
Gaussian transitions in the Markov chain, as depicted in
Fig. 2. For the encoder, we design two-layer transformers
that encode the motion context xt and control context ct

separately, with output embeddings of the same dimension.
The motion context is augmented by diffusion dropout. In
the transformers, a position embedding is introduced to
emphasize the positional relation at different time steps. The
outputs are then concatenated together into a six-layers cross-
modal transformer. For the decoder, we design a three-layer
Transformer decoder similar to [18] to model spatial and
temporal dependencies. The inputs include the future motion
yt, the noise variable ε, a diffusion step index s, as well as
the output embedding of the cross-model Transformer. In
diffusion step s, the noised future motion yts is concatenated
with a diffusion step embedding. Finally, fully-connected
layers downsample the output to the motion dimension.
Like in TimeGrad [24], we can pass autoregressively to
the network to repeat until the desired horizon although
TimeGrad primarily relies on recurrent nets for propagating
temporal information.

IV. EXPERIMENTS AND EVALUATIONS

In this section, We first describe the experimental setting,
including the dataset, ablation settings, and implementation
details. We then present the results on the generation and
reconstruction of human locomotion samples. On the basis
of these, we evaluate and discuss the performance of both
the proposed frameworks and the baselines, followed by
preliminary results on various tasks.

Fig. 3: Footstep analysis for generated motion given past
information and control signals. The footstep count fest on
tolerance value vtol. The black dots indicate v95tol, the first
velocity tolerance for capturing 95% estimated footsteps.

A. Experimental Setting

Dataset. We evaluate MoDiff on a dataset of human
locomotion preprocessed by [5] that retargets skeletons from
the Edinburgh Locomotion MoCap, CMU Motion Capture,
and HDM05 datasets, which includes various human gaits
along different trajectories. The motion context m ∈ R63

is represented by the 3D coordinates of 21 body joints.
The control context a ∈ R3 includes forward, lateral and
rotational velocities. We slice the training data into 4-second
clips and downsample these to 20 fps with 50% overlap.
For synthesis and reconstruction with incomplete input, we
generate data with missing parts by setting some joints to
zero.

Ablation Settings. To assess the impact of design deci-
sions, we compare our proposed MoDiff with MoGlow [5]
and TimeGrad [24]. MoGlow is an autoregressive model
based on normalizing flows and LSTM for human motion
generation. TimeGrad is an autoregressive diffusion model
for general time series forecasting and reports state-of-the-
art performance on real-world datasets, such as traffic and
electricity. Both MoDiff and MoGlow are probabilistic and
designed for controllable motion synthesis. Unlike MoGlow,
MoDiff and TimeGrad are diffusion-based models, but the
encoder of TimeGrad is still based on LSTM, while MoDiff
uses transformers. We evaluate the impact of the diffusion
models and transformers architecture by comparing MoDiff
with MoGlow and TimeGrad. To highlight the advantage of
the proposed diffusion data dropout, we applied this dropout
strategy to both MoDiff and the baseline models.

Implementation Details. Following the experimental set-
ting in MoGlow [5], MoDiff is trained with 10-frame time
windows, i.e., Th = 10. In our experiments, the maximum
number of diffusion steps S is 100. The diffusion dropout
rate is {0, 0.05, · · · , 0.25}, increasing every 100 epochs after
500 epochs. The Transformer in our experiments is set to 256
dimensions and 4 heads. We use the standard Transformer
encoder in PyTorch, with the T5-style relative positional
embedding. We train with Adam optimizer with a learning
rate of 5e-5 and batch size of 64 for 1000 epochs. All
experiments were conducted on a single NVIDIA A100
Tensor Core GPU.

B. Results and Discussions

Results. For quantitative analysis, we evaluate the quality
of motion generation with footstep analysis and bone-length

Fig. 4: Example poses with body joints flying away that are
generated by MoGlow with incomplete past poses.



Fig. 5: Example sequences generated by MoDiff given different past information and control signals.

Fig. 6: An example sequence reconstructed by MoDiff. The right arm is missing in the past frames.

TABLE I: Results of the footsteps and bone-length analysis
with complete input. The number closest to the recorded
motion capture is in bold.

Model fest v95tol µ σ RMSE
Recorded Data 289 5 0.315 0.263 0
MoGlow (no drop) 314 6 0.222 0.134 0.315
MoGlow (drop) 253 5 0.341 0.250 0.250
TimeGrad (no drop) 284 6 0.331 0.338 0.124
TimeGrad (drop) 281 5 0.289 0.241 0.115
MoDiff (no drop) 280 5 0.289 0.239 0.089
MoDiff (drop) 284 5 0.334 0.286 0.072

TABLE II: Footsteps and bone-length results of generation
and reconstruction with incomplete input. The number clos-
est to the recorded motion capture is in bold.

Model fest v95tol µ σ RMSEge RMSEre

Recorded Data 289 5 0.315 0.263 - -
MoDiff (no drop) 299 5 0.375 0.347 0.105 0.116
MoDiff (drop) 293 5 0.358 0.287 0.101 0.108

analysis, which are widely-used methods to evaluate artifacts
related to heel sliding and limb stretching [5]. Footstep
analysis compares the estimated footsteps of the generated
motion and the recorded motion. The average number of
footsteps fest can be detected at intervals where the hori-
zontal velocity of the heel joints is below a tolerance value
vtol. For evaluation, we compare the estimated number of
footsteps at the first velocity tolerance for capturing 95%
steps, denoted as v95tol. The estimated number of footsteps
on different vtol in the generated motions are displayed in
Fig. 3, the detected v95tol is shown as black dot in this figure.
We can observe that the curves of MoDiff and TimeGrad,

with and without diffusion dropout, are consistently closer
to the curve of the recorded motion compared to MoGlow.
Table I shows the results given complete context, include the
estimated footstepsfest, the tolerance value v95tol, the mean µ
and standard deviation σ of the step duration, as well as
the results of bone-length analysis. The bone-length analysis
is for evaluating bone-stretching artifacts. We compare the
RMSE (cm) of the bone length. Table II shows the results
of generation and reconstruction given incomplete context.

Discussion. MoDiff can qualitatively and quantitatively
generate recorded realistic motion with good diversity on
the locomotion task, as demonstrated by the snapshots of
generated motion sequences in Fig. 5. In contrast, the native
MoGlow suffers from poor adherence and generates motion
with noticeable foot-sliding artifacts. As can be seen from the
results in Table I, the diffusion-based models, TimeGrad and
MoDiff, perform significantly better in terms of both footstep
and bone-length analysis compared to MoGlow which is
based on normalizing flow. However, unlike the models the
use LSTM, i.e. MoGlow and TimeGrad, MoDiff benefits
from transformer-based encoders to further improve on bone-
length analysis. The attention mechanisms in MoDiff discern
specific features over a longer period, which is essential for
learning consistent gaits under conditioning signals. Addi-
tionally, the attention-based transformer is effective at ex-
tracting meaningful information from intermediate diffusion
steps with roughly corrected skeleton poses, which is not as
feasible with standard LSTM models.

MoDiff can be extended to reconstruct incomplete body
joints or frames without extra training, as illustrated by the
reconstruction results in Table II, results that do not signif-
icant diverge from those in Table I. When the past input is



incomplete, MoGlow exhibits unstable outputs, i.e. skeletons
with joints flying away, as shown in Fig. 4. The results from
MoDiff are closer to the recorded motion capture, illustrating
the robustness of the diffusion-based architecture. From the
example shown in Fig. 6, we observe that the reconstructed
body joints (the right arm in blue) fit the original skeleton
well. As can be seen from both Table I and Table II, the
proposed data dropout strategy improves the performance of
all three methods, which confirms its effectiveness.

Extra Applications. MoDiff is a task-agnostic framework
that can be applied to other cross-modal generation tasks,
such as text-to-motion and music-to-dance. We show gen-
erated samples in the attached multimedia materials link
on YouTube:youtu.be/qeAs9eF3pbs. Note that the framework
was not intended to be text-based even if it is agnostic to the
input modality. The text here is just to generate a command
token that can be dynamic and from other control modalities,
e.g., keyboard strokes. It is thus more appropriate to com-
pare MoDiff with other works for controllable locomotion
generation.

V. CONCLUSIONS

We propose MoDiff, a Transformer-based diffusion model,
to tackle the challenge of controllable and robust human
motion synthesis and reconstruction under imperfect condi-
tions. We introduce a novel diffusion data dropout strategy
utilizing the diffusion forward process, which improves data
efficiency and model robustness. The comparison results
on the locomotion dataset with state-of-the-art baselines
demonstrate the superiority of our MoDiff. MoDiff can be
applied to various multimodal synthesis tasks. In the future,
we plan to extend the MoDiff framework for classifier-guided
conditional generation and apply it for more challenging
dance motions.
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